Worksheet for 10
Introduction to Parametric curves

Problem Set Instructions: Work through the following problems with your group. You might not finish all of the problems, but be sure to work on all of them together and gain a good idea of how to proceed.

Trigonometry review:
(a) Draw two reference triangles, 30-60-90 and 45-45-90, and label side lengths and angles in radians.
(b) What are $\cos (\pi / 4), \cos (\pi / 6), \sin (\pi / 6), \tan (\pi / 3)$, and $\tan (11 \pi / 6)$?
(c) What are $\cos (5 \pi / 6)$, and $\cos (7 \pi / 6)$
(d) Find all angles θ with $\cos (\theta)=1 / 2$.
(e) Find all angles θ with $\sin (\theta)=-1 / \sqrt{3}$.
(f) Sketch the graph in the r, θ plane of $r=\sin (2 \theta)$.
(g) Sketch the graph in the r, θ plane of $r=5-2 \sin (\theta)$.

Recall the definition of a parametric curve: Let $x(t), y(t), a \leq t \leq b$ be functions. Then every $t \in[a, b]$ corresponds to a point $(x(t), y(t))$ in the $x y$-plane. The curve traced out in the xy - plane for $a \leq t \leq b$ is called a parametric curve with initial point $(x(a), y(a))$ and terminal point $(x(b), y(b))$

Parametric curves allow us to describe curves in space that don't correspond to graphs of functions.

Problems

1. Consider the parametric curve $(x(t), y(t))$, where

$$
x(t)=\frac{1-t^{2}}{1+t^{2}} \quad y(t)=\frac{2 t}{1+t^{2}} .
$$

(a) Sketch this curve as t increases from -2 to 2 .
(b) What happens to x and y as $t \rightarrow \infty$. What about as $t \rightarrow-\infty$.
(c) show that this parametric curve traces out the circle $x^{2}+y^{2}=1$
(d) Compute dy/dx for this curve, first by using $x^{2}+y^{2}=1$, then using the parametric equations.
(e) Find an equation for the tangent line to the curve at $t=2$.
2. Sketch the following parametric curves
(a) $x=\sin (4 \theta), y=\cos (4 \theta), 0 \leq \theta \leq \pi / 2$.
(b) $x=t^{t}-t, y=2^{t}+t,-2 \leq 2$.
(c) $x=\cos ^{2}(t), y=1+\cos (t), 0 \leq \pi$.
3. Match the following parametric equations to their graphs

$$
\begin{array}{l|l|l}
x=\cos (t), y=\sin (t), 0 \leq t \leq \pi & x=\cos (3 t), y=\sin (2 t), 0 \leq t \leq 2 \pi & x=t^{2}, y=t^{5},-1 \leq t \leq 1 \\
x=\cos (2 t), y=\sin (2 t), 0 \leq t \leq \pi & x=t+\cos (2 t), y=t+\sin (2 t), 0 \leq t \leq \pi & x=t^{5}, y=t^{2},-1 \leq t \leq 1 \\
x=3 \cos (t), y=2 \sin (t), 0 \leq t \leq 2 \pi & x=2 \cos ^{2}(t), y=3 \sin ^{2}(t), 0 \leq t \leq 2 \pi & x=t^{2}-t, y=t^{2}+t, 0 \leq t \leq 2 \\
x=2 \cos (t), y=3 \sin (t), 0 \leq t \leq 2 \pi & x=1-\sin (t), y=\cos ^{2}(t), 0 \leq t \leq 2 \pi & x=t^{3}+t^{2}-t, y=t^{2}-t^{4},-1 \leq t \leq 1 \\
\text { Graphs: } &
\end{array}
$$

A.

B.

C.

D.

I.

